Laser Drivers for Inertial Fusion Energy-Opportunities and Challenges

Dr. E. M. Campbell
Director Emeritus
University of Rochester
Laboratory for Laser Energetics

IFAST April 21, 2022

Fusion energy with lasers requires $\eta G^1 > \sim 10$ for acceptable levels of recirculating power to the plant (DT fuel cycle as an example)

The metric is not G (E_{driver}) but $\eta G (E_{driver})$

¹Driver efficiency, η; Target gain, G

IFE (DT) features, advantages, challenges

IFE Features:

- Rep rates from 0.1 Hz to 10 Hz
 - 3.16 x 10⁶ -3.16 x10⁸/yr
 (@ 100% capacity factor)
- Driver
 - Energy/pulse
 - 0.5-20 MJ
 - Peak power
 - >~500 TW
 - Average power
 - 3 to 10 MW
- Targets
 - ~9,000 to 900,000/day
 - Target cost <\$1

IFE advantages

- Separable components
- Highly modular
- Intrinsically safe (NO safety systems)
- Attractive development path
 - "Non-nuclear" demo plant
 - Low rep-rate "nuclear" facility for target development
 - Driver modularity
- · Fueling and ash removal
- Load following
- Flexible "first wall"
- Technology and science spin-offs
- Multiple target concepts (same driver)
- Multiple sponsors for technology and science (DOD, NNSA, Industry)
 - Technologies (i.e., laser diodes, optics)
 - Target physics and supporting technologies
 - Scientists and engineers

To be economically attractive assuming 40% conversion efficiency, each 9 GJ of fusion must cost less than \$60 to \$100—cost of entire system [target, reactor, Tritium (breeding and recovery), driver, and delivery system].

What don't I believe?

There are several target concepts for ICF that would be explored in an IFE program

Self-Ignition

External "Spark"

External "Spark"

Features

- Single laser
- I_{peak} ~10¹⁵ watts/cm²
- Shaped ~5-10 nsec pulse

Features

- two lasers
 - ~5-10 nsec long pulse, I_{peak}~5 x10¹⁴ (compression)
 - 1-10 psec, I_{peak}~10¹⁹ (ignition pulse)

Features

- Single laser
- I_{peak} ~10¹⁶ watts/cm²
- Shaped ~5-10 nsec pulse followed by intense ~100 psec pulse

While the demonstration of ignition on NIF is a major scientific achievement and an "existence proof" that central hot spot ignition can be done with modest energy and mass, significant research, engineering and technology development is required for IFE

A conversation at LLNL in 1960

Short wavelength, incoherence (Spatial, Temporal), stud pulses are solutions.

Present ICF/HEDP laser drivers are based on S&T developed in the 1980s and 1990s; LPI motivated <u>every</u> generation change in laser drivers: IFE lasers must be "LPI free"

Second generation Moderate bandwidth $(\Delta\omega/\omega_0 < 0.1\%)$ No bandwidth $(\Delta\omega/\omega_0 < 0.1\%)$ No bandwidth Inertial confinement drivers

Third generation Nd:glass 351 nm (3ω) Moderate bandwidth $(\Delta\omega/\omega_0 < 0.1\%)$

Fourth generation (Future) 351 nm (3 ω) Wide bandwidth $(\Delta\omega/\omega_0 > 1\%)$

First generation Nd:glass

1054 nm (1ω) No bandwidth

1980s

1990s

2010s 2020s

E28174d

Lasers for IFE

Considerations

- Must enable Intensity on target required for Ignition and gain (P_{abl}~(I_{abs})^{2/3}
 - High absorption, understand laser deposition in space and time, avoid processes that reduce target compressibility
- Efficiency ("grid to laser" must be such that ηG~>10 where η is laser energy/input energy and G is target gain)
 - Important to consider all energy required for the laser-including thermal management (i.e flow, coolant! This is generally not done)
- Economics
 - \$/Joule to construct
 - Operability and reliability
 - Includes optical train to target
- Development
 - Supply chain
 - S&T infrastructure
 - "Unit cell" demonstration
 - Other applications for motivation

There are two options for IFE laser drivers: Excimer lasers

Excimer lasers (KrF, ArF): Pulsed power gas lasers

Advantage

- Short wavelength (krF (248 nm); ArF (193 nm)
 - Good target coupling
- Potential for good beam quality on target
 - Reduced imprint
 - Able to zoom (beam spot follows the implosion increasing the coupling efficiency)
- Gain media is a gas (low cost, low non-linear optics),
- Supply chain motivated by use in lithography

Challenges

- Small community for high energy (100's of KJ to MJ) applications
 - i.e. lithography community is 'discharge laser at <Joule/pulse
- E-O efficiency ~< 10%
- Target concepts limited to conventional "hot spot" or shock ignition
- Short wavelength stresses "laser imprint Issues" (adequate bandwidth (>~10 THz) needs to be evaluated
- High fluence Optical components and transport due to high photon energy (~5 ev) for entire optical train
- High voltage and current pulsed power coupling to gain media
- Short lifetime (nsec) of upper laser state requires "pulse compression techniques to go from microseconds to IFE relevant (~10 nsec) pulse durations
 - Compression techniques
 - Optical multiplexing (NRL)
 - Pulse compression (SBS, SRS) Excimer (bandwidth impact)

There are two options for IFE laser drivers: Solid State lasers

Solid State lasers: electrically pumped by efficient laser diodes

- Advantages
 - Vast majority of ICF/HEDP facilities are solid state (flashlamp pumped)
 - Diode pumped, high rep rate (>~10 Hz) being deployed for PW systems
 - Numerous applications in industry, science, and national security
 - Applications will drive diode costs down, increase e-0 efficiency and expand supply chain
 - Flexible high power performance
 - Temporal formats from fsec (10⁻¹⁵seconds) to CW
 - Flexible Wavelength (non-linear frequency conversion) with good efficiency
 - Electrical –Optical efficiency (research to improve is a major goal!)
 - 1 micron (~25%)
 - 0.5 micron (>18%) dependent on temporal pulse format
 - 0.35 micron (~18%) dependent on temporal pulse format
 - Bandwidth > 10THz for LPI and imprint mitigation (impact on laser e-o efficiency)
 - Wavelength flexibility can also be advantageous for imprint mitigation
 - Large bandwidth (>10 THz) possible with beam strategy and multiple materials
 - Temporal and spatial approaches to mitigate LPI (non-linear optics (OPA exploitation, STUD pulses)
 - Architecture flexibility possible
 - Most optical components will see fundamental wavelength with increased damage threshold

Challenges

- LPI will be issue without bandwidth or STUD pulses
- (\$/Joule) Gain media requires high precision fabrication, diode costs ((\$/watt) are high)
 - More research required for pulsed laser applications
 - Diode "robustness" impact on operability
- High non-linear index (n₂) impacts architecture and possibility "temporal coherence" strategies
- Zooming will require novel architectures or innovation

Solid-state lasers used in present implosion facilities employ technologies and approaches developed in the 1990's

Laser Indirect Drive (LID)

Laser Direct Drive (LDD)

Transport

National Ignition Facility

National Ignition Facility *

- ~ 2 MJ (UV)
 - "unit cell" ~10 kJ UV (20 kJ 1 micron)
- 192 (~40×40 cm²) beams grouped in 48 quads
- polar configuration
- ~ 1 shot per 8 hours
- Bandwidth ~<100 GHz

OMEGA-60 Laser †

- ~ 30kJ (UV)
- 60 beams (~30-cm diam.)
- spherical configuration
- ~ 1 shot per hour
- Bandwidth <1 THz

Energy flow in a DPSSL direct-drive (LDD) target tomorrow ("NIF-like laser")

IFE requires 21st century Lasers:LLE is developing FLUX a broad band (~10-15 Thz), UV (350 nm) laser employing novel non-linear optical schemes to explore LPI with an "incoherent" source

Fourth Generation solid-state laser (FLUX) : Broadband ($\Delta\omega/\omega_0 \sim 1.5\%$) 350nm "to expand LPI-free parameter space" for all laser ICF/HEDP approaches and imprint (laser direct drive)

Flux will be complete in the fall of 2023 and transported to the OMEGA chamber (60 beam 30 kJ) where experiments will begin in late 2024 to address Imprint and LPI

The state-of-the-art for diode-pumped, solid-state lasers (DPSSLs) has advanced significantly driven by commercial and scientific applications and national security (Directed Energy Weapons)

HAPLS pump laser @ ELI Beamlines

DiPOLE-100X at HIBEF/EuXFEL

- Yb:YAG ceramic
- active mirrors
- cryo conduction cooling

- Nd:phosphate glass slabs
- RT helium gas cooling

- Yb:YAG ceramic slabs
- cryo helium gas cooling

Out of the Box Concepts:StarDriver* employs many (10³ to 10⁵) relatively small (cm-scale aperture) beamlines to deliver broadband irradiation to Laser Direct Drive (LDD) targets

- Lasers operating at many discrete wavelengths spanning the spectrum required to mitigate or even suppress laser plasma instabilities (LPIs).
 - Ideally, lasers incoherently interfere only on target
- Smaller apertures enable a wider range of gain material options and addresses "supply chain challenges"
- Off-the-shelf optical components will spur competitive commercial development leading to economies of scale
- Moderate scale (100s J) could benefit industrial and other applications
- Modular approach provides scalability across a range of ICF and IFE facilities to enable <u>complex pulse shapes</u> and <u>focal spot zooming</u> to optimize LDD drive.
- Employ proven DPSSL architectures and enable new concepts to improve system performance, efficiency, and reliability.
 - * D. Eimerl *et al.*, "StarDriver: A Flexible Laser Driver for Inertial Confinement Fusion and High Energy Density Physics," J. Fusion Energy vol. 33, pp. 476–488 (2014).

Out of the Box Concepts: STUD pulse approach¹

Stud pulse concept

- Control LPI by modulating laser pulse in time at the Laser -plasma instability growth time
- Scramble speckles (hot spots) in space
- Laser is a series of short pulses rather than continuous in time
- Research underway at Colorado State University CSU) funded by ARPA-E

Representative NIF Ignition Pulse

¹ Bedros Afeyan

Even Einstein would be impressed!

That stimulated emission idea has sure paid off!

